

AQA Chemistry A-level

Required Practical 11

Carry out simple test-tube reactions to identify transition metal ions in aqueous solution

Test 1a:

- Place 10 drops of solution in a test tube.
- Add sodium hydroxide solution, shaking gently, dropwise until in excess. Record any observations.
- Do not discard this mixture.

Test 1b:

- Half fill a 250 cm³ beaker with the freshly boiled water.
- Allow the four test tubes containing the mixtures from Test 1a to stand in the beaker of hot water for about 10 minutes.
- Record any observations.

Test 2:

- Place about 10 drops of sodium carbonate solution in a test tube.
- Add about 10 drops of solution and shake the mixture gently. Record any observations.

Test 3:

- Place about 10 drops of solution in a test tube.
- Add about 10 drops of silver nitrate solution and shake the mixture gently.
- Allow the four test tubes to stand for about 10 minutes. Record any observations.

Metal	Aqueous ion	Action of NaOH	Action of an excess of NaOH(aq)	Action of NH₃(aq)	Action of an excess of NH ₃ (aq)	Action of Na₂CO₃(aq)
Iron(II)	[Fe(H ₂ O) ₆] ²⁺ (aq) green solution	Fe(H ₂ O) ₄ (OH) ₂ (s) green ppt goes brown on standing in air	No further change	Fe(H ₂ O) ₄ (OH) ₂ (s) green ppt goes brown on standing in air	No further change	FeCO ₃ (s) green ppt
Copper(II)	[Cu(H ₂ O) ₆] ²⁺ (aq) blue solution	Cu(H ₂ O) ₄ (OH) ₂ (s) blue ppt	No further change	Cu(H ₂ O) ₄ (OH) ₂ (s) blue ppt	[Cu(H ₂ O) ₂ (NH ₃) ₄] ²⁺ (aq) deep blue solution	CuCO ₃ (s) blue-green ppt
Iron(III)	[Fe(H ₂ O) ₈] ³⁺ (aq) purple solution may look yellow- brown due to some [Fe(H ₂ O) ₅ (OH)] ²⁺ (aq)	Fe(H ₂ O) ₃ (OH) ₃ (s) brown ppt (ppt may look orange-brown)	No further change	Fe(H ₂ O) ₃ (OH) ₃ (s) brown ppt (ppt may look orange- brown)	No further change	Fe(H ₂ O) ₃ (OH) ₃ (s) brown ppt (ppt may look orange-brown) and CO ₂ gas evolved
Aluminium(III)	[Al(H ₂ O) ₈] ³⁺ (aq) colourless solution	Al(H ₂ O) ₃ (OH) ₃ (s) white ppt	[Al(OH) ₄] ⁻ (aq) colourless solution	Al(H ₂ O) ₃ (OH) ₃ (s) white ppt	No further change	$Al(H_2O)_3(OH)_3(s)$ white ppt and CO_2 gas evolved

